
Pergamon 
S0021-8928(96)00030-5 

J. AppL Maths Mechs, Vol. 60, No. 2, pp. 233-242, 1996 
Copyright © 1996 Elsevier Science Ltd 

Printed in Great Britain. All rights reserved 
00214928/96 $24.00+0.00 

THE OSCILLATIONS OF A PARTICLE SUSPENDED 
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The motion of a particle suspended on an ideal thread in a uniform gravitational field is investigated. The problem of the orbital 
stability of the periodic motion of the particle along the vertical is solved. The non-linear oscillations in the neighbourhood of 
the periodic motion are oonsidered in the case when the motion is unstable. Normalization of the Hamilton function using 
simpleetic mappings is employed in the investigation. © 1996 Elsevier Science Ltd. All rights reserved. 

1. F O R M U L A T I O N  OF T H E  P R O B L E M  

Suppose a particle of  mass m is attached at one of the ends of  an absolutely flexible weightless inextens- 
ible thread of length 1, the other end of which is attached to a fixed point O. The particle moves in a 
uniform gravitationa~l field in a fixed vertical plane Oxy (Fig. 1). 

Suppose x, y are the coordinates of  the particle m. The condition for the thread to be inextensible 
gives the unilateral o3nstraint 12 - x  2 - 5  ,2/> 0. We will take as generalized coordinates the polar angle 
0 and the quantity ~ = 1 - (x 2 + y2)1/2. The corresponding momenta  will be the quantities 

p o = m ( l - ~ ) 2 0 ,  p~=m~ 

In the case of  a weakened relationship, when ~ > 0, the motion is described by canonical equations 
with the Hamil ton function 

1 2 - m g ( l - ~ ) c o s O  (1.1) H =  p~ + 
2m 

If, at the instant when the relation g = 0 is attained the value ofp~ is non-zero, a shock occurs. The 
following relation is satisfied for the shock 

P~ = - P (  (1.2) 

where the minus and plus superscripts denote the values of the momentumpg before and after the shock. 
The equations of  motion have a particular solution corresponding to motion of the particle m 

1/2 along the fixed vertical Ox (Fig. 1). The period x is equal to 2(2h/g) , where g is the acceleration due 
to gravity and h is the height that the particle jumps along the vertical when the thread is loose after 
the shock. To eliminate collision between the particle m and the point O of the fixed thread we will 
assume that h < 1. 

This x-periodic motion in the time interval 0 ~< t < x is described by the equations 

0 = O, Po = 0 (1.3) 

= - ~ g t  2 +(2gh)~t,  Pg =-mgt+m(2gh)  y2 

The functions ~(t),p~(t), when ~ > O, satisfy the canonical equations with Hamiltonian 

i 2 + mg~ (1.4) r= 2mp  
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and, when ~ = 0, Eq. (1.2) is satisfied. For shocks which occur at instants of time that are a multiple 
of x, we have ~ = 0, whilep~ jumps in value fromp~ = -m(2gh) 1/2 t op~  = -m(2gh)l~.. 

The purpose of the present paper is to give a strict analytic solution of the non-linear problem of 
the orbital stability of the periodic motion (1.3) for all values of h in the interval 0 < h < I. We also 
investigate the non-linear oscillations of a particle in the neighbourhood of the motion (1.3) when 
the value of h lies in the range of its orbital instability. The stability of  the motion (1.3) was 
considered previously in [1-3] in the linear form of the problem. A number of other types of periodic 
motions, differing from (1.3), were investigated in [2, 3], and the phenomenon of chaotic motion was 
studied. 

2. T H E  H A M I L T O N I A N  OF T H E  P E R T U R B E D  M O T I O N  

Following [4], in (1.1) we make a canonical change of variables, keeping the quantities 0;p0 unchanged 
and introducing quantities J and v instead of the variablesp~ and ~, as given by the following formulae 

1 I { 9n  2 " ~  2 
(2.1) 

where fl  and f2 are 2~-periodic functions of v, and we have fl  = 1 - vn -1, f2 = vn-a( 2 - vn-1) for 
0 ~ < v < 2 ~ .  

In the unperturbed motion with Hamiltonian (1.4) the variables J and v will be the action-angle 
variables I and w. Here 

F=(9m82g2 )~ l~ '  l -  2m(2g)~ (2.2) 

3F 2n 2r¢ 

31 "¢ x 

To obtain the Hamilton function, which describes the motion in the neighbourhood of the periodic 
motion (1.3), we introduce the perturbations q, p and r using the canonical transformation 0, P0, J, v 

q, p, r, v, given by the equations 

ml 2 2~p - i+ ml2 2~g r (2.3) 
0 = q ,  p0=-----~-~--~-, J -  ~ ~ h ' u =u 

If we change from t to the new dimensionless independent v a r i a b l e  ~(g/2h)l/2t, we obtain from (1.1) 
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and (2.1)-(2.3) the Hamiltonian of the perturbed motion in the form of a series in even powers of q, 
p, I r l  1/2 

H = r + h 2 (q, p,v )+... (2.4) 

~ = ~ x ( l - × f 2 ) q 2 + I C 2 ( l - × f 2 ) - 2 p  2, × = h / l  ( 0 < × < 1 )  

where the dots denote terms of the fourth and higher powers. The term in (2.4) that is independent of 
q, p, r, v is omitted. 

The orbital stability (instability) of periodic motion (1.3) denotes the stability (instability) of the 
solution q = p = r = 0 of the system with Hamiltonian (2.4) with respect to perturbations of the quantities 
q, p, r. 

3. THE N O R M A L I Z A T I O N  M E T H O D  

Suppose the perturbed motion occurs at the same energy level as the unperturbed periodic motion 
(1.3). Then H = 0, where H is the function (2.4). From the equation H = 0 we obtain r = - K ( q , p ,  v). 
At the isoenergy level considered the perturbed motion is described by canonical equations with 
Hamiltonian K (Whittaker's equations [5]), and the quantity v plays the role of the independent variable. 
The solution q = p = 0 of these equations corresponds to the periodic motion (1.3) being investigated. 
The orbital stability (instability) of the periodic motion (1.3) follows from the stability (instability) of 
the solution q = p -= 0. 

In the neighbourhood of the point q = p = 0, the function K can be represented in the form of a 
converging series in powers of q and p 

K = K 2 + K 4 + . . . + K , + . . .  (3.1) 

where Ks is a form of power s with coefficients that are 2~-periodic in v, and K2 = h2. Using existing 
algorithms [6], when solving the problems of the stability of the equilibrium q = p = 0 it is necessary 
to normalize the first few forms of the expansion (3.1), which is an extremely tedious procedure. In 
particular, when normalizing the quadratic form K2 one has to find (either numerically or analytically) 
the fundamental matrix of the solutions of the corresponding linear system of differential equations, 
2~-periodic in v. It is true that in the problem considered this matrix can be written down in explicit 
forms, but for a known matrix of the fundamental solutions the normalization of forms higher than the 
second power in (3.1) requires the evaluation of several definite integrals in the interval 0 ~< v ~< 2~. 
This can turn out to be extremely complicated, particularly if it is necessary to obtain explicit expressions 
for the coefficients of the normal form in terms of the parameters of the problem. 

We will use a different method of normalization in this paper. It is based on an investigation of the 
non-linear simplect:ic mapping, specified by the motions of the system with Hamiltonian K during the 
period when v varies from 0 to 2~. The basic principle of the method is briefly as follows. Suppose q0 
and P0 are the initial value of the variables q and p when v = 0 or, which is the same thing, when t = 
0, and ql andp t  are their values when v = 2r~ (or, which is the same thing, when t = tl, where tl is the 
instant when the particle satisfies the relation ~ + y2 = 12). The functions ql = ql(q0, P0), Pl = Pl(qo, 
P0) specify the simplectic mapping q0, P0 --* ql, Pl. This mapping has a fixed point q0 = P0 = 0, while 
the functions ql andpl  are analytic in the neighbourhood of this point. Using a canonical transformation 
this mapping can be reduced to a normal form, from the form of which one can then obtain the 
corresponding nomtal form of the Hamiltonian K. 

A similar approach to the problem of normalizing time-periodic Hamiltonian systems was proposed 
in [7], where the simplectic mapping was obtained using numerical integration of the corresponding 
canonical equations using Jacobi's method. In the problem investigated here, the mapping qo, Po ~ ql, 
Pl is obtained without numerical integration. The procedure for constructing it uses the fact that when 
v varies from 0 to 2~t, the thread on which the particle m is suspended becomes loose and the motion 
of the point is completely known. It is given by the equations 

x(t)  = ~ gt 2 + Jo t + x o, y(t) = j'ot + Y0 (3.2) 

x(t)  = gt + k o, y(t)  = .i'o 

where x0, Y0, :¢0, Y0 are the values of the corresponding quantities when v = 0. 
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4. T H E  M A P P I N G  

Using the equation r0 = -K(qo, P0, 0), the formulae connecting the initial variables 0, Po, ~, Pg in 
Sections 1 and 2, and the variables q, p, r and v, and also the relation between x, y, 2, y and 0, P0, ~, 
p~, not written here, we obtain the following expressions for the quantities x0, Y0, 20, Y0 in terms of q0 
and P0 

I 3 Xo = / ( l - ~ q o  2 +O4), Yo = / ( q o - ~ q 0  +04)  (4.1) 

( 2 × + 1  I 1 ) Xo - ~  1 ~ q2 p 2 + O  4 = + ~ q o P o  2~t2×2 

Yo = - ~  qo -~--~x P0 - 12x qo + ' ~ x q o P o  - ~ q o P o  +04 

where O4 is the set of  terms higher than the third power in q0 and P0. 
The relationx 2 + y2 = l 2, takit~g (3.2) and (4.1) into account, gives an equation for fmding the instant 

of  time tl when the particle m reaches the constraint. Solving it we obtain 

t| 2 ~ ( 1  8 × 2 - 2 × + 1 q 2  4 4 x + l  / 
= +-~qoPo - ~ p 2 o  +04 4× 2~2~ 2 

Putting t = tl in (3.2) and taking (4.1) into account we obtain the values xl, Yl, 21,))1 of the quantities 
x,y, 2,~ at the instant of reaching the constraint, expressed in terms of q0 andp0. Then taking the chain 
of replacements of variables in the reverse order, carried out when obtaining relations (4.1), we find 
the following relations, which express the required mapping of the expression ql,Pl of the variables q, 
p when v = 2~t in terms of their values when v = 0 

2 2 3 
qj = (1 - 4×)qo + 4 1 rtpo + a3oq 3 + a21qoPo + at2qoPo + ao3Po + 04 

Pl = -27tx(l - 2x)q 0 + (1 - 4x)p o + b3oq~ + b2|q2po + bl2qoPo + bo3P 3 + 04 

a3o = - ~ ( 1 6 x  3 - 2 4 x  2 + 5 × - 3 ) ,  a21 = x-l/t-l(32x 3 --40x 2 + 2 × - 1 )  

a12 = -4x- l / t  -2 (8x 2 - 8x - I), a03 = ~ ×-27t-3 (16× 2 - 12x - 3) 

b3 o = - l ~ n ( 9 6 × 3 - 4 4 × 2 + 2 2 x - 3 ) ,  b 2 1 = 2 ( 2 4 × 2 - 5 × + 1 )  

bl2 = - n - I  n-I  ( 48x2 + 2× - I), bo3 = 4~-1~ -2 (4~ + 1) 

(4.2) 

(4.3) 

5. S T A B I L I T Y  IN T H E  L I N E A R  A P P R O X I M A T I O N  

The fundamental matrix of the linearized equations of the perturbed motion with Hamiltonian K2, 
calculated for v = 2~, is identical with the matrix of the linearized mapping (4.2). Its characteristic 
equation has the form 

p2 _ 2(1 - 4×)p + 1 = 0 (5.1) 

When the inequality 

0 < × < ~ (5.2) 

is satisfied, the roots (multipliers) of Eq. (5.1) are complex conjugate numbers with moduli equal 
to unity: Pl = exp(i21tX), P2 = Pl where +iX are the characteristic exponents of the linear 
equations with Hamiltonian K2. In the range given by (5.2) the motion (1.3) is orbitally stable in 
the linear approximation [8]. 
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At the boundary × = 1/2 of the range (5.2) the multipliers are multiples: Pl = Pz = -1. Here there 
is instability in the linear approximation since the matrix of the linearized mapping (4.2) is not reduced 
to diagonal form. 

When the inequality × > 1/2 is satisfied, Eq. (5.1) has a root with modulus greater than unity and, 
consequently [8], there is instability (in the rigorous non-linear formulation of the problem, and not 
only in its linear approximation). This indicates that if, in the unperturbed periodic motion (1.3), the 
height of the post-ilmpact jump of the particle rn exceeds half the length of the thread, the periodic 
motion considered is orbitally unstable. 

When 0 < × ~< lt/2 we have the critical case of the theory of stability and a non-linear analysis is 
required for a rigorous solution of the problem of the orbital stability of the motion (1.3). 

6. N O N - L I N E A R  ANALYSIS IN THE STABILITY R E G I O N  
IN THE F I R S T  A P P R O X I M A T I O N  

Suppose × lies inside the range (5.2). It then follows from (5.1) that cos 2rc~, = 1 - 4×. Hence (taking 
into account the fact that for × = 0 we have/(2 = n-2p2 and, consequently, as × ---> 0 the quantity 
2t --> 0), we obtain t]hat in the range (5.2) 

L = (2n)-larccos(1 - 4×) (6.1) 

By making the change of variables q = 11-Iq,, p = pp,, where Ix = 1/2(n sin 2g~,) 1/2 we reduce the 
linear part of the mapping (4.2) to the normal form--rotation by an angle 2~,. The mapping takes the 
following form (the primes on the new variables are omitted) 

q, = cos 2n~q0 + sin 2~.p0 ÷ C3oq~ + c21q~po + c,2qop 2 + co3p~ + 0 4 
(6.2) 

P l = - s i n  27t~/O + c o s 2 n ~ o  0 + d30 q3 + d2 l qo 2 Po + dl 2 qo p2 + do 3 p3 + 04 

C30 = 11-2a30 , c21 = a21, ci2 = Ix2al2 , c03 = 114a03 
d.~o -4 (6.3) =11 b30, d21 =Ix-2b21, dl 2 =b12 ' do 3 _11_ 2bo 3 

The coefficients c/a and d/a are related by the identities 

cos 2~,(3c30 + d21 ) = sin 2rcM3d30 - c21 ), cos 2nL(czl + d12 ) = sin 2n~,(d21 - q2 ) 

cos 2rc~,(c12 + 3d03 ) = sin 2g~.(d12 - 3c03 ) (6.4) 

These identities are a consequence of the simplectic form of the mapping (4.2). 
We will now reduce the terms of the third power in the mapping (6.2) to normal form. To do this it 

is first convenient to change from q andp  to the complex-conjugate variables z,  ~: z = q - ip, ~ = q + 
ip. T h e  mapping can be written in the variables z, $ in the following form 

z, : p, o + + A,Z  o + + + o ,  
(6.5) 

Zl = P2ZO + g30, z3 + g21Z2Zo + gl2Zo ~2 + g03z-~ + 0 4 

fkl  = 11kl + i ~ t ,  gkl = ,flk 

~30 := 1~8(C30--Cl2 +d21 -do3), v30 =-y8(d30-C21 -dl2  +c03 ) 

!121 :: ~(3c30 +Cl2 +d21 +3d03), V21 =-~(3d .~  0 -c21 +dl2 -3%3) 

1112 ::,~(3c30 +c12 -d21 - 3d03), v12 = -~(3d30 +c21 +d12 +3c03 ) 

1103 --: ~(c30 - q 2  -d21 +d03), V03 = - ~ ( d 3 o  +c2] -d12 -c03) 

We make the canonical transformation z, ;~ ~ z*, ;~* specified implicitly by the equations 

(6.6) 

z*=as / a~* ,  ~ = aS / az 



238 A. E Markeyev 

where 
_,3 _,4 

S = ZZ* + $40 z4 + s31Z3~ * + $22Z2~ .2 + sI3ZZ + s04z 

and the coefficients Sm~ are chosen so as to simplify the structure of the mapping to the greatest extent. 
Mapping (6.5) takes the following form in the new variables 

. . . 2  , 

Zl = PlZ0 +[f30 +PI(P~ -l)s31]Z03 + f21z0 Z0 + 

+[f12 + 301 (p2 _ l)s, 3 ] Z ~  2 + if03 + 4pl (p4 _ l)s04 ]~,~3 + 04 
(6.7) 

ZI* = P2Z~ + [g30 - 4P2 (P~ - l)s40 ]Z03 + ['g21 - 3p2 (p2 _ l)s31 ]Z~2 ~ + 
, _ , 2  

+gI2ZoZo + [g03 - P2(P22 - 1)s13 ]~o 3 + 04 

For values of the parameter x in the range (5.2) we have p2 ~ 1, p2 ~ 1. The quantities p4 and 
p24 differ from unity for all values of x in the range (5.2) apart from x = 1/4, for which p~ = p~ = 1. 
For this value of  x we obtain the fourth-order resonance 4~. = 1. 

We will first consider the non-resonant case × ~ 1/4. Then the coefficients Sm~ of the generating func- 
tion S can be chosen so that only one third-degree monomial remains on the right-hand sides of each 
of Eqs (6.7), and the mapping takes the following (normal) form 

, ,2 , _ ,  , , ,2 
Z~ = P i Z o + f 2 1 Z o  ZO + 0 4 ,  Zl =P2Z"O +gl2zOZ-O +04  

This mapping corresponds to Hamilton function (3.1), normalized up to terms of the fourth power 

K = iLz*~* + ~ ic 2 (Z*~*)2 +... (6.8) 

where c2 = -ip2(2x)-lf21. It follows from (6.4) and (6.6) that c2 is real and can be calculated from the 
formula 

c2 = - (3C3o + d21 + 3do3 + cl2)/(85t) 2 (6.9) 

In the canonically conjugate real variables 9" and R*, introduced by the canonical representation 

• , ½  • ,~. z =- i (2R  )2exp(i~0 ), =i(2R*)~exp(-itp *) (6.10) 

Hamiltonian (6.8) has the form 

. , 2  
K=XR +c2R +O(R "3) (6.11) 

If the quantity c2 in (6.11) is non-zero, the position of equilibrium q = p = 0 of the system with 
Hamilton function (3.1) is stable [9, 10]. Calculations using (6.9), (6.3) and (4.3) show that the expression 
for c2 can be converted to the form 

x + 4  
C2 8n2x(l - 2x) 

In the range (5.2) we have c 2 < 0 and consequently when x - 1/4 in this range the periodic motion 
(1.3) is orbitally stable. Suppose now that ~ = 1/4. We then have resonance 4~. = 1 and the normal 
form of the mapping will be 

, ,2  _ ,  _ , 3  , _ , 2  .3  

Z~ =plzo+f2tzo Zo +fo3Zo +04,  Zt* =P2~+gl2ZoZo +g30Zo +04  

For the corresponding Hamilton function (3.1), normalized up to terms of the fourth power, we obtain 
the expression 

K =zkz z + ~zc2(z z )2 +(81t)-Ip2fo3eW z*4 -(87c)-tptg3oe-it'z +... 
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In tp*, R* variables, defined by (6.10), we have 
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K = ~LR* + c 2 R  .2 - 

-(2~)-1[g03 sin(2n~. + 4q~* - u  ) - v03 cos(2nL + 4q~* - v  )]R .2 + O(R .3 ) (6.12) 

When × = 1/4 we have c2 = -17(2n) -2, lx03 = -(2n) -1, v03 = 0. In R = R*, q~ = 9" - v/4 variables, 
instead of (6.12) we obtain the Hamiltonian 

K = (c2 + b2cos4q~)R 2 + O(R 3) 

where b2 = (2~) -2. Since I c21 > b2, in the resonance case considered the periodic motion (1.3) is orbitally 
stable [7]. 

7. STABILITY AT T H E  B O U N D A R Y  OF THE R A N G E  (5.2) 

When ~ ¢ 1/2 the quantity ~ is equal to 1/2, i.e. we obtain second-order resonance. In this case it is 
not possible to reduce the quadratic part of the Hamilton function (3.1) to a Hamiltonian, independent 
of v, in the class of linear canonical transformations that are 2g-periodic in v [11]. But this reduction 
can be achieved in the class of 4r¢- periodic transformations. According to this, when the function K is 
normalized, instead of the mapping qo, Po ~ ql ,Pl  during the period of variation of v from 0 to 2~ we 
will consider the mapping q0, P0 ~ q2, P2 during twice the period of variation of v from 0 to 4~. For × 
= 1/2 we obtain from (4.2) 

q2 = q o - 8 n - l p o  + F(qo,Po)+04,  P2 = Po +G(qo,Po)+04 

F = -12q 3 + 96x -lq20p 0 - 384~ -2q0p 2 + 1808(3rt3) -I p3 

G = 3rtq~ - 36q02P0 + 192~-'q0Po 2 - 384n -2p~ 
(7.1) 

We make the following canonical change of variables q, p -> q*, p* specified by the equations 

q*=~Slap* ,  p = ~ S l a q  

S = ( g ~  / 2)qp*(l - (I 1 / 60)p .2 ) 

In the q*, p* variables, mapping (7.1) takes the following form 

q2 = q o - 4 ~ P o  + F (qo,Po)+04 , P2 = Po +G (qo,Po)+04 
, , , 2  ,3  

F* = -24x-2q~ 3 + 961t-tq~ 2 Po - 192qoPo + 768~ / 5p o (7.2) 

,3 - 2  ,2 , - I  * ,2 ,3 
G* =12g- 'q  0 - 7 2 g  q0 P0 +1927t qoPo -192p0 

This mapping is generated (in the range of variation of v from 0 to 4g) by the Hamiltonian (3.1), 
normalized up to terms of the fourth power 

3/~- '4~ *a K = - ~ P * 2 - / 4  ,t +06 (7.3) 

Since the signs of the coef f i c ien t s  ofp  .2 a n d  q,4 in (7.3) are the same, the equilibrium q = p = 0 in a 
system with Hamilton function (3.1) is stable [12]. 

The above investigation enables us to formulate the following final result: if in the unperturbed periodic 
motion of a point along the vertical the height of its post-impact jump does not exceed half the length 
of the thread, this periodic motion is orbitally stable, otherwise it is unstable. This result was obtained 
previously by Ivano~rl- using numerical calculations. 

tIVANOV A. P., A qu;ditative theory of motion in systems with non-restoring couplings. Doctorate dissertation, Moscow, 14 
November 1994. 
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8. N O N - L I N E A R  O S C I L L A T I O N S  IN T H E  N E I G H B O U R H O O D  OF AN 
U N S T A B L E  T R A J E C T O R Y  

Suppose × = 1/2 + e (0 < e ~ 1). In this case the periodic motion (1.3) is orbitally unstable. We will 
fix the energy level corresponding to trajectories (1.3) and consider the nature of the non-linear 
oscillations of the particle m in its neighbourhood. We will again obtain the Hamilton function describing 
the oscillations using the corresponding simplectic mapping. Since the values of the parameter × are 
assumed to be close to its boundary value, then, as in Section 7, we must investigate the mapping in 
the range of variation of v from O to 4n. 

Assuming q = el/2X, p = el/2y, we obtain from (4.2) and (4.3) the mappingXo, Yo -~X2, Y2 in the form 

X 2 = (1 + 16c)X o - 8ru I (1 + 4e)Y o + EF(Xo, Yo) + O( e.~ ) 
(8.1) 

}/2 = --4ne-Xo +(I + 16e)Y o + eG(X o, Yo)+ O(e ~ ) 

where F and G are the functions from (7.1). 
After two canonical changes of variables X, Y ---> X', Y' using the formulae 

X = ~ r U l ( l + 2 e ) X  ', y=.vt-2rc[2(l+2e.)]-IY" 

and X', Y' --> X*, Y*, specified by the generating function 

S= X'Y*(I -(11160)eY .2 ) 

mapping (8.1) takes the following form 

X 2 = (1 + 16E)X 0 - 4~Y o + EF* (X 0, Yo)+O(E ~ ) 

Y2" = -8e~-IX~ + (! + 16e) Y(~ + EG* (X~, Y(~ )+ O(~ ~ ) 

where F* and G* are the functions from (7.2). The following Hamilton function corresponds to this 
mapping 

K = - ~ y,2 ~ _ + E ( , / _ 2 X , -  + ~ y . 2 )  e~n_ax .4  +O(E~) (8.2) 

Quantities O(e 3/2) in (8.2) are 4x-periodic in v. 
The canonical equations with Hamiltonian (8.2) describe non-linear oscillations in the neighbourhood 

of the trajectory (1.3). If the mappings are not used, the change from the q, p variables to the X*, Y* 
variables can be obtained by a canonical transformation, 4re-periodic in v and analytic in q andp,  which 
reduces Hamiltonian (3.1) to the form (8.2). 

To facilitate further calculations we will make one more canonical change of variables X*, Y* ~ Q, 
P, by putting 

X* = ( ~ ) ~ ( 1 -  ~e)/cQ, Y* = ( l - ~ E ) - I  p 

and we will introduce the new independent variable ~ = (3/2)1/2•-11). In the new variables the motion 
is described by a Hamiltonian of the form 

K = - I~ p2 + ~ •(2Q2 _ Q4) + O(c~ ) (8.3) 

Omitting the term O(e 3/2) in (8.3) we obtain an approximate ("unperturbed") system with Hamiltonian 

Kt0) = _ ~ p 2  + ~1~(2Q2 _ Q 4 )  (8.4) 

The unperturbed system has the integral K (°) = c = const. The phase pattern is shown in Fig. 2. When 
c > e/3 motion is impossible. If c > e/3 the system is in one of the equilibrium positions Q = ___ 1, P = 
0. In the phase plane these correspond to stable singular points---centres. 

When 0 < c < e/3 (the range of oscillations) oscillations occur in the neighbourhood of positions of 
equilibrium. These oscillations can be described using Jacobi elliptic functions 
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Fig. 2. 

Q = +adn(rl, k), P = -l-~[6(e - 3c)]/t~/sn0q, k)cn('q,k) 

k2=(a2-b2) la  2 ( 0 < k < l ) ,  ~=(2E/3)Y2a(~+~0) 

a 2 = 1 + ( 1 - 3 c / e )  ½, b 2 = 1 - ( 1 - 3 c / e )  ~ ( a > b > 0 )  

(8.5) 

Here  and below ~ is an arbitrary constant, and the upper and lower signs relate to trajectories in the 
right and left of  the: half-planes of the phase pattern, respectively. 

The frequency (with respect to 0 of the oscillations of the quantifies q andp is specified by the equation 

to = ~ na(6e) ~ K -t (k) (8.6) 

where K(k) is the complete elliptic integral of the first kind. When c ---> e/3 we obtain from (8.6) the 
frequency of small oscillations in the neighbourhood of the equilibria Q = __. 1, P = 0, equal to 2/3(6e)v2. 

The value c = 0 of the integral K (°) = const corresponds either to the unstable equilibrium Q = 
P = 0 (a saddle in the phase plane), or doubly asymptotic homoelinic trajectories--separatrices. On 
these we have 

Q=_+a/2ch -I 11, P = + ~ ' ~ - ~ s h l ] c h  -2 r I 

When c < 0 (the region of rotations) non-linear oscillations occur for which the phase trajectories 
in Fig. 2 envelope all three equilibrium positions. On these trajectories 

Q = acnO],k), P = ~ a [ 9 E ( e -  3c)] ¼ sn(rl, k)dn(rl, k) 

k 2 = a  2 / ( a  2+b 2) ( ~ / 2 / 2 < k < 1 ) ,  r l = ~ [ 9 e ( e - 3 c ) ] ¼ ( ~ + ~ 0 )  

a2=l+(l-3c/e.)  ~, b2=-1+(l -3c /e)  Y2 ( a > b > 0 )  

(8.7) 

In the region of rotations the frequency is given by the expression 

to = ~ n[9~(~ - 3c)] ¼ K -I (k) (8.8) 

In the regions of  oscillations and rotations the Hamilton function (8.4) can be reduced to action- 
angle variables 1", w'. In these variables K (°) = c(I'), where to =aK(°)/aI '. The Hamiltonian K (°) satisfies 
the non-degeneracy condition a2K(°)/aI '2 # o. In fact, in the region of oscillations we obtain from (8.5) 
and (8.6) that 

am n2(2-k2) 
01 --7 = 2k-~-- 'k2 ~ 3  [(2 - k 2 )E - 2(1 - k 2 )K] (8.9) 

where E(k) is the complete elliptic integral of the second kind. Noting that the derivative with respect 
to k of the expression in square brackets in (8.9) is equal to 3k(K- E) and is positive for all k, and this 
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expression is equal to zero when k = 0, we obtain that it is positive for all k from the interval (0, 1). 
Consequently, ~oo/~I" > 0 and the non-degeneracy condition is satisfied. 

In the case of rotations we have from (8.7) and (8.8) 

t)(.O _ /1:2(2k2 - 1) [ ( l _ k 2 ) K + ( 2 k 2 _ l ) E ]  
31" 8 k 2 ( 1 - k 2 ) K 3  

(8.10) 

Taking into account the fact that 1/2 < k 2 < 1 in the region of rotations, we obtain from (8.10) that 
~o~/~I" < 0, and the non-degeneracy condition is also satisfied here. 

We will now consider a perturbed system with the complete Hamiltonian (8.3). The unstable 
equilibrium Q = P = 0 also exists in the perturbed system, and it corresponds to the periodic motion 
(1.3) of  the particle m. Using the Poincar6 theory of periodic motions [13] and Moser's theorem on 
invariant curves [10] it can be shown that an orbitally stable periodic motion of the particle m with a 
period equal to twice the period of  the motion (1.3) can be generated from the stable equilibria Q = 
_+1, P = 0 of  the unperturbed system. 

It also follows from the non-degeneracy of the Hamiltonian K (°) and Moser's theorem on invariant 
curves that if the positive quantity e is sufficiently small, the trajectories of the particle m which start 
fairly close to the unstable trajectory (1.3) always remain in its neighbourhood. We can obtain an estimate 
of the parameters of  this neighbourhood by making use of the above analysis of  an unperturbed system: 
if the trajectories of  the unperturbed system with Hamiltonian (8.3) begin fairly close to the origin of  
coordinates Q = P = 0, then in further motion I Q I < ~/2(1 + gl), I P I < 1/3~/(6e)(1 + g2), where ga 
and g2 can be as small as desired when e and Q0 and P0 approach zero. 
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